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Abstract--The flow of a separating two-phase suspension in a rotating finite axisymmetric cylinder is 
analyzed. The Ekman suction is reproduced by an integral formula expected to hold when both the Ekman 
and particle Taylor numbers, E and fl, are small. The interior two-fluid averaged equations of motion 
are subsequently reduced to an initial-value system, whose (numerical) solution points out the effect of 
the Ekman layers on the separation process. It is confirmed that the global significance of these shear 
regions is represented by the parameter 2 = EI/2/IE IflH, where H is the dimensionless height of the 
container and E is the relative density difference between the phases. As compared to the "infinitely long" 
cylinder (2 = 0) case, the most essential effects which show up when 2 is of order 1 or larger are the 
following: (a) an O(1) diminution in the angular mixture velocity, measured in the rotating system of the 
cylinder; (b) an O(IE let(0)) enhancement of the relative velocity between the phases, where at(0) is the 
initial volume fraction of the dispersed phase. The present results are in good agreement with those of 
an earlier mixture (diffusion) formulation when I ~ I << 1, and recover the "infinitely long" cylinder theory 
when 2 --* 0. 

1. I N T R O D U C T I O N  

The centrifugal separation of a mixture is a complicated process, the understanding of which is 
of intrinsic theoretical and practical importance. Several pertinent aspects of this subject are 
reflected in the typical configuration to be considered in the present study, figure 1: the motion 
of a rotating fluid mixture in a finite, straight axisymmetric cylinder of radius r* and length H* 
(the upper asterisk denotes dimensional variables). The mixture consists of a dispersed phase of 
particles (or droplets) of density p* and uniform radius a* within a continuous phase of liquid 
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Figure 1. Description of the system. 
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of density p~ and viscosity bt*. Initially, both phases are in solid rotation with the container whose 
angular velocity is f~*, and the gravity acceleration is negligible compare6 to ~*2r*. 

The basic parameters of this problem are: the reduced density difference, E = (p* -p*) /p*;  the 
_ z _ , 2 n , . , / . . , .  the Ekman number, (modified) Taylor number of the dispersed particle, f l - 9 "  ~, ~,c/~,c, 

E=p*/p*f2*r*2; the aspect ratio (dimensionles height), H = H*/r*; and the initial disperse 
volume fraction, ~t (0). 

Attention is focused on the range E<< 1, fl<< 1, [EI~ 1 and H>>E ~/z. The physical implications 
of these restrictions will be clarified below. 

The density difference between the phases (for definiteness, p* > p*) gives rise to a transient 
motion in which the heavier component is expelled towards the periphery. The objective is to 
investigate the velocity field and the volume fraction ~ of particles during this separation. 

Important aspects of this process under closely related circumstances have been discussed by 
Greenspan (1983) for an infinitely long cylinder (endcaps neglected). An exact similarity solution 
of the two-fluid averaged equations of motion has been obtained whose main features are as 
follows. In the separating mixture bulk ~ is a function of t alone and the radial and azimuthal 
velocities vary linearly with the radius, r. The particles are squeezed from the mixture (there is no 
disengagement between phases in the central region when the inner radius is zero) and deposited 
on a thickening sediment layer on the outer wall of the container, where ~ = ct M = const. This radial 
separation induces an azimuthal retrograde motion of magnitude ~ [c [~t(0)f~*r* relative to a 
system rotating with f~*, see also Ungarish & Greenspan (1984). Since the radial velocities are 
"-" I E I fl fl*r*, the significant deviation from solid rotation is represented by the Rossby number 
Ro=lEImax(~t(0),fl). When [E[<<I, Greenspan's (1983) solution provides simple analytical 
expressions for the radial and azimuthal components of the relative velocity between the phases. 

The serious disadvantage of Greenspan's solution is the obvious omission of the shear layers on 
the endcaps of the container. This important effect has been investigated by Ungarish (1986) upon 
employing the mixture (or diffusion) formulation. The solution concerns the linear flow dominated 
by Coriolis terms which corresponds to the limit Ro ---, 0, i.e. I EI --, 0 for non-dilute suspensions. 
In addition, E and fl are kept small to facilitate boundary layer analysis. The study has indicated 
that the viscous regions adjacent to the endplates have typical Ekman structure. They may 
considerably affect the azimuthal velocity of the inviscid core when the parameter 2 = E~/2/IEIflH 
is not small. For instance, for 2 = 1 the maximal azimuthal lag velocity is only about 35% of and 
decays faster than the value predicted by Greenspan (1983). An appropriate estimate yields 

R o =  I E I max I~ (0){1"]~/~\2] ')'/~1 

(cf. appendix A).t 
However, in many cases of interest, E is not infinitesimally small. In these circumstances the 

Ekman layers are expected to affect other flow variables in addition to the azimuthal velocity. In 
particular, it is worthy to question what are the consequences of these shear layers on the behavior 
of ~ and of the relative velocities, because these are the dominant quantities in numerous 
applications. The main objective of the present study is to provide quantitative and qualitative 
answers to this issue. Moreover, this investigation endeavors to clarify the compatibility between 
the two-fluid formulation and the mixture model (Ishii 1975) when applied to the present 
complicated flow field. 

To this end, a solution of the two-fluid equations in the finite cylinder is sought. The Ekman 
layer effect is incorporated via an integral correlation, expected to hold for small (but finite) E and 
/~. This procedure obviates both the infinitely long assumption of Greenspan (1983) and the linear 
flow approximation of Ungarish (1986). 

2. FORMULATION 

The time-dependent motion of the two incompressible, immiscible components in a system 
rotating with constant ~* is represented by the averaged variables of the continuous and dispersed 

tUngar i sh  (1986) also considers a spatial initial variation of  ct, which is irrelevant to the present case. 
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phases, subscripted by C and D, respectively. The equations of  motion in terms of the phase 
occupancy ay, velocity q~, pressure p~ and stresses z~ and f? l  (Ishii 1975) are, upon postulating 
a linear drag interaction: 

and 

Ot* ~- V.gfq?  = O, [1] 

Cry+ ~f, = 1 [2] 

V ] ± - * w *  (q* q*) = -  

- ( pp - -p* ) f l *  x (•* x r * ) + V . z T + l s T I . V a : ,  [3] 

where the subscript f denotes the phases D or C, f '  stands for the complementary component and 
P~ is the reduced pressure, 

P?  = p?  -- ½p* I gl * x r* 12. [4] 

To close the system it is further assumed that 

P*  - P* = const, [5] 

the stress tensors are Newtonian and the drag term coefficient is Stokesian, i.e. 

9 1 
D* =/~*fr~ a,2. [6] 

The effective viscosity of  the mixture/~*fr can be correlated, according to Ishii & Zuber (1979), as 
follows: 

z~ # (a )  ~ (1 -- a)-2.5. [7] 

Here and thereafter, the notation g = at) is used. For later implementation, the mixture and relative 
velocities are also introduced, 

[(1 + E)gqD + (1 - -  ~ ) q c ]  
qm = (1 + £ g )  , qR = qD - -  qc. [8] 

The initial conditions are solid body rotation, q/(r, t = 0 ) =  0, with given homogeneous void 
fraction, ~ (r, t = 0 ) =  • (0), through the container. 

To be more specific, the cylindrical coordinate system (r, 0, z) rotating around z is employed and 
the variables are reduced to dimensionless form upon introducing the following scaling: 

r* q P? and / '7 
r= r -  ~, t= t* lEl f l f~*,  q = ( l E l f l f l * r * ) '  P:=P--~c eY=(½P~lElf~*2r*2)" 

The solution to [1]-[7] is sought as a superposition of an (almost) inviscid core and thin viscous 
layers on the endplates. For the main core, the following expansion is introduced: 

q(r , t )=[rU}°)( t ) :  + rV}°)(t)l~ + EI/2W}°)(t)(2--H - 1)~ 1 

+ E1/2[u}'): + v}1)0 + Et/2w~'L~] +'", [9] 

= ~{°)(t) + EI/2~ {I) + "" • [10] 

and 

Pf(r, t) = r2p(°)(t) + EI/2P °) + • .. + const. [11] 

Only the leading terms are subsequently retained and the superscript (0) is therefore dropped. 
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Substituting [9]-[11] into [1]-[7] yields: for the core region the equations of continuity, 

and 

E)/2 ) 
a ' + 2 a  UD+--ff-WD = 0  

E~/2 ) 
- a ' + 2 ( 1 - a )  Uc+--~-Wc =0; 

[121 

[13] 

the radial and azimuthal momentum equations for the dispersed phase, 

fl(1 + OLalE I(Ub + U b -  V2)-2VD] = - e  + /~ (a ) (Uc-  U p ) + - -  

and 

fl(1 +¢)[flI¢I(Vb+2UDVD)+2UD] =.U(a)(Vc-- VD); 

£ 
[14] 

IEI 

[15] 

and the radial and azimuthal equations for the continuous phase, 

fl[fll~:l(U~+ V 2 -  V 2 ) -  2Vc] = - P - - -  /t ( a ) (U c -  Up) [16] 
1 - a  

and 

fl[[31El(V'c+2UcVc)+2Uc]- 1 _ # ( a ) ( V c -  VD); [17] 

here the prime denotes the differentiation in time. 
The leading balance for axial momentum yields identical results for both phases, namely, 

WD = Wc(= W). [181 

An additional equation is therefore necessary for defining the axial velocity component W. It is 
postulated that the axial velocity is induced by the viscous Ekman layers on the top and bottom 
plates. Guided by analogy with homogeneous fluids (Wedemeyer 1964), which is apparently 
supported by Ungarish (1986) for IEI~ 0 and by numerical solutions in the more general case 
(Ungarish 1988), it seems reasonable to employ the approximation 

where 

W(t )=  - ~ Vm(t), [191 

[(1 + E)aVD + (1 - a) Vc] 
V m = [20] 

(1 + ca) 

is the angular velocity of the mixture in the core. Actually, the Ekman layers are expected 
to develop in about one revolution of the system which corresponds to the short time interval 
t -,, IEI//in the present scaling and are subsequently quasi-steady. Approximation [19] implies the 
condition that the typical boundary layer thickness, x/#c/P c ~ , is able to encompass many particle 
radii, a*. This is equivalent to the restriction fl << 1. 

The formulation of the internal core flow, to leading order in E ~/2, is now complete. This is an 
initial-value problem, starting with zero velocity components and the prescribed a (0). 

The task now is to calculate the solution for the time-dependent variables a, UD, Uc, 11"o and 
Vc from the preceding equations. Equations [12], [15] and [17], after rearrangement, define a', V b 
and V~ in standard form. The radial momentum equations require some manipulation. First, using 
[12] and [13] one gets 

- -  1 { E 1/2 \ 
Uc = 1 - a  ~aUD +---~- W), [21] 
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whose time derivative in view of [19] is 

, - I  a'(UD-- Uc)+aU~,--  - -~ ~'Vr.+V"~-~) V~ [221 U c =  1 - ~  

and Vm is obtained from [20] as an explicit function of ~, Vo and V c and their first time derivative. 
Next, eliminating P from [14] and [16] and further replacing U~ by [22] yields an equation for U~ 
in terms of c<, Up, Uc, I'D, Vc, ~', V~ and V~. Since the latter three derivatives have already 
been expressed in standard form, the subsequent calculations are routine numerical work (see 
appendix B). 

It is worthwhile to remark that eliminating the axial component from [12] and [13] on account 
of [18] gives 

~' + 2ct(1 - ~)(UD -- Vc) = 0, [23] 

which emphasizes that the variation of ~ in the core is dominated by the relative motion in the 
radial direction. This motion, however, is indirectly affected by the axial Ekman layer suction, as 
shown below. 

3. R E S U L T S  

The foregoing system for the flow variables in the interior mixture core has been integrated for 
various combinations of E, fl and 2 (recall, EJ/:/H = 21e 18); for definiteness, ct (0)= 0.2 was used 
in these computations. The corresponding predictions of Greenspan (1983) and Ungarish (1986) 
serve for comparison. Greenspan's solution is straightforwardly reproduced, letting 2 = 0. How- 
ever, Ungarish's results represent the singular limit E ~ 0 of the present model and required, 
consequently, the employment of the particular formulation, appendix A. 

Figure 2 emphasizes the important effect played by the Ekman layers on the angular velocity 
of the mixture, for a system with fl = 0.1 and various E and 2. The predictions of Ungarish in this 
respect are clearly confirmed, with quite small modifications induced by the non-linear convective 
contribution for non-zero E. 
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Figure 2. Angular velocity of  the mixture vs time for various E and 2 (2 = 0 corresponds to Greenspan's 
(1983) solution and Ungarish's (1986) results, marked U, represent the limit E --* 0). ~ = 0.I, ~ (0)= 0.2. 
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Figure 4. Reduced angular velocity vs time for different 
systems with 2 = 2 and =(0) = 0.2: (a) E = 0.3, # = 0.2; 

(b) ¢ = 0.2, # = 0.05. 

The typical behavior of the radial velocity of the mixture is displayed in figure 3.t It is observed 
that Um is indeed proportional to E and that, for non-small 2, the Ekman layers eventually give 
rise to a reverse mass flow in the core. 

Figure 4 intends to further test the relevance of 2. This parameter appears explicitly in the 
analysis of Ungarish (1986), but is apparently obscured by the more complete present formulation. 
Reduced angular velocities vs time for several different combinations of E and/~, but fixed 2 = 2 
(i.e. properly chosen values of (Ei/2/H)= 2 I E I fl) are drawn. The different graphs display a very 
similar behavior and tend to collapse into Ungarish's (1986) solution when I EI diminishes. Similar 
features have been observed for other values of 2, not shown here. 

So far, the main relevant predictions of Ungarish (1986) have been confirmed. The next 
important topic is establishing the influence of non-zero 2 on the behavior of ~ and the components 
of the relative velocity qR = qD-  qo The typical system fl = 0.1, E = 0.5, 2 = 1 is considered. 

Figures 5 and 6 indicate that, in comparison to Greenspan's (1983) solution, the present values 
of ~ decay faster and the relative velocities in both the radial and azimuthal directions eventually 
become larger.:~ This trend is monotonical in time. However, as predicted by Greenspan, UR and 
(--Vx/2fl) are of comparable magnitude. For a better understanding of these features it is 
worthwhile to concentrate on the discrepancies of the relative velocities, in comparison with the 
case 2 = 0, see figure 7. It is argued that these discrepancies are the induced result of the different 
angular velocities, see figure 2, for the following reasons. First, recall that the absolute effective 
angular velocity of the mixture is 

filer = f~*(1 + IE I/~Vm). [24] 

Next, observe that physical considerations imply that the relative velocities of the small dispersed 
particles are dominated by local balances. The drag components counteract the radial buoyancy 
and the azimuthal Coriolis terms; therefore 

UR oc f ~  [251 

and 

Vx oc - D~er Ux. [26] 

tThe initial behavior of this variable is beyond the resolution of this graph, see appendix C. 
~The footnote above applies to Vx and UR. 
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Combining [24]-[26] yields 

and 

[up,]~ 
[ U R ] ~  = 0 

1 = 21E IP ([Vm]~ - [Vm]~=0) [27] 

[Vp,l~ 
1 ~ 3 IE Ifl([Vm]x - [Vm]2=O). [28] 

[Vp,]2=0 

These formulas reproduce both qualitatively and quantitatively the calculated discrepancies, see 
figure 7, which indicates that [24]-[26] indeed account for the pertinent leading mechanism. 

Since 0 ~< [Vm]~- [Vm]~=0 ~< ~(0)/fl it is concluded that the relative discrepancies of  UR and VR 
from Greenspan's solution are non-negative and (approximately) bounded by 21E let(0) and 
31EIct (0), respectively; the bound is approached for large 2. 

In view of the foregoing results and [23] it becomes evident that a decays faster for larger 2, as 
indeed observed in figure 5. Moreover, it is realized that, actually, [27] and [28] give underestimates, 
because Up, and Vp, are also proportional to a hindering function of  the form ~ (1 - a)4.5. This 
coefficient, at a particular time instant, increases with 2 due to the faster decay of  a. 

The discrepancy of  Up with [UDL=0 is more complicated, see figure 8. A large 2 causes an initial 
reduction of  the dispersed-phase radial velocity, but at a later stage this velocity difference changes 
sign. To explain this feature consider the kinematic relationship 

Up = Jr "[" (l - 0~) Up,, [29] 

where Jr = a U ,  + (1 - a ) U c  is the reduced volume flux in the radial direction. The Ekman layers 
drive fluid to the periphery and volume conservation therefore requires a negative Jr in the core, 
but for Greenspan's solution (i.e. 2 = 0), this flux is identically zero. Therefore, 

[uD]~ - [ u D ] ~ . 0  = [Yr]~ + (1 - ~ ) ( [uR]~  - [up,]~=0). [30] 

The first term on the r.h.s, is negative but eventually decays while the positive latter one 
monotonically grows with t, resulting in the typical behavior observed in figure 8. 

The foregoing analysis, and especially [27], leads to the conclusion that, for given E and fl, the 
rate of  separation improves with increasing 2 (for instance, by employing a shorter container, all 
other variables unchanged). The relative enhancement potential is ,,,2[E l a (0) as compared to 
Greenspan's solution (1983). 
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4. C O N C L U D I N G  REMA RK S  

A solution method for the two-fluid equations of motion in the almost inviscid separating 
mixture core in afinite rotating cylinder has been developed. The results further elucidate the effects 
of  the Ekman layers on the flow field. 

The asymptotic Ro --* 0 (i.e. [El ~ 0) indications of the finite cylinder treatment (Ungarish 1986) 
concerning the dominance of parameter 2 on the azimuthal motion have been verified and extended 
to non-linear flows. Thus, in general, the azimuthal retrograde O([E [ct(0)f~*) angular velocity 
predicted by the infinitely long cylinder approach (Greenspan 1983) is substantially reduced when 

~ 1 and diminishes when 2 is large. This gives rise to a corresponding relative increase of the 
effective absolute angular velocity which induces larger relative velocity components and a faster 
local separation rate (d0t/dt) than in the "infinite" cylinder. It is emphasized, however, that for 
non-small 2 the relative discrepancies with Greenspan's solution are O(1) in azimuthal velocity and 
O( [E [~(0)) for the volume fraction and relative velocity. 

The present solution recovers exactly the results of  Greenspan (1983) when 2 = 0 and those of  
Ungarish (1986) when E ~ 0 with, essentially, comparable computational resources. Nevertheless, 
the relative merits of  the previous models should not be ignored. Thus, it is briefly recalled that 
Greenspan's solution is "exact" (for 2 = 0), provides simple closed-form relationships between the 
positions of  the kinematic shocks and 0t(t) and for the relative velocity components when ~ = 0 
and reveals the initial behavior on the "relaxation" scale. However, Greenspan's solution is 
restricted to 0t (r, 0) = const and to 2 << 1. Ungarish's approximation is facile for analytic manipu- 
lations, highlights parametric dependencies and solves the details of the Ekman layer flow. Its 
limitations are the Ro<<l (i.e. [E [<< 1) assumption and the employment of a closure formula for 
the relative velocity. Finally, it is noted that the present approach is superior because it covers a 
wider range of parameters than either Greenspan's or Ungarish's. The main disadvantages are: this 
solution concerns only the leading term in an E 1/2 powers expansion, it relies on an integral Ekman 
layer suction premise and is restricted to ct (r, 0 ) =  const. 

The good compatibility between Ungarish's mixture (diffusion) results and the present two-fluid 
computations is very satisfactory. This enhances the confidence in the former formulation as a 
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means for investigating more complicated configurations, where the latter modeling may become 
quite cumbersome. 

This study concerns the (almost inviscid) mixture core only. A sediment layer and a pure fluid 
region (if the internal radius of the container is not zero) are expected to develop, to leading order 
in E 1/2, in close resemblance to Greenspan's solution. The additional details, which probably require 
the solution of E ~/4 and E I/3 shear layers, are not pursued here. 

The linear Stokesian relation between drag and relative velocity can be justified when fl << 1. This 
restriction also assures two pertinent conditions concerning the Ekman layers: their being 
quasi-steady on the separation time scale and much wider than the particle diameter. 

The Ekman layer suction correlation [19], which is the most critical step of the present theory, 
deserves a great deal of both attention and suspicion. Actually, very little is known about these 
layers in the two-phase non-linear regime [the finite difference computation (Ungarish 1988) and 
the related yon Karman solution (Ungarish & Greenspan 1983), indicate similarities to the 
single-phase flow but also reveal some dilemmas of formulation and interpretation]. In this respect, 
the present results relate the more observable core flow to the smaller and less observable 
circulation in the thin shear regions. This will, hopefully, facilitate experimental verifications to 
throw more light on this important and difficult topic. 
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A P P E N D I X  A 

Equations and Estimations of Ungarish (1986)for the Core Region 

Postulate: 

where 

qR = s - - - - ~ r  ~, 

Equation of motion: 

and 

£ 

S ~ m  
IE[" 

- s ~ t  (1 - a ) 2  
~t' = [ A . 1 ]  

(fl I'm)' = -- 22 ~ (e) (fl Vm) + Se'. [A.2] 
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In addition, 

Urn) ~(z - c() ~ (- ~.v/-~(cO(#vm ) 
I -~  = ~(~) 

, [A.3] 

and 

(Jr) = 2 [A.4] 

Thus, for given ~. and ~t(0), one obtains generalized solutions for (#V,,), (Um/IE I) and (J/IE I) vs 
t. 

In the dilute limit estimate, the extremum 

(flVm) = - c t  (0) ( ~ )  ~/(~- ') 

(= -ct(0)/e when 2 ~ 1) is reached at 

In 2 
t = - -  ( = ½ w h e n 2 ~ l ) .  

2(2 - 1) 

A P P E N D I X  B 
The standard initial-value system for ~t, Uo, VD, Uc and Vc can be expressed as follows: 

~t' = -2ct(1 - ~t)(Ua -- Uc); [B.1] 

1 [ I~(ot)e)(Vc_Vo)_2Uo(l+lElflVo)l; [B.2] v~, = I - ~  /~(1 + 

V~ = I-~- 1 Eft( 1 F  ~tp (___~)_ or) (Vc - I'D) + 2Uc(1 + 1¢ [flVc)]; [B.31 

Vm = [~ (1 + E) I'D + (1 -- ~) Vc]., [B.4] 
(1 + E~) 

Vmt = {(l q- E)aVb + (I -- g)V~ + ~'[(I +6)V D - VC-- EVm]}. [8.5] 
(1 + E~t) 

E'/2 rd( ) = vo vm,l; [B.6] 
Wt= H E  d~t 

--ct'(UD-- Uc) 2 X = ( l  -cx) ~ - - - ~  + U 2 -  V ~ - ( I  + e)(U2D - V~) + fl--~[(l +E)VD-- VC] 

1 I E  # ( ' )  ]}  [B.7] d=fl--~ ]-~-l- 1--~ ( U c -  Up) ; 

1 _ at) (X -- Wt); [B.8] 
U~= 1 d-E(1 

and 

l - c U D +  , , / - ~ - ~  Vm [8.91 
uc  = i - ~ _  ~ - g  • 

Here the prime denotes differentiation with respect to time. Note that [8.4]-[8.7] and [8.9] 
represent algebraic relationships needed for the integration of the primed variables. 
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A P P E N D I X  C 
RelaxatDn Time Boundary Layer 

A simple inspection of the momentum equations [14]-[17] indicates that an initial singular 
behavior occurs when I E I/~: --, 0. During this short relaxation time interval the contribution of the 
Ekman layers is negligible and ~ is almost constant, therefore good analytic approximations can 
be obtained, e.g. 

,El ¢ [ ( / ( ' 2 ) ]  IEIP 1E~ (O) Up + ¢~ (0------~' 1 -- ~ (0-----~ Up UD=7-TK, 1 - e x p  , - ~ : t  . U~.- Ua= 

and 

where 

V m = - - ~ ( O )  l_bE~(O ) t-I---~2 exp [Elfl 2 ] - 1  , 

[1 - -  ~ ( 0 ) ]  2 1 1 - -  ~ ( 0 )  

K,= /~[~(0)] and K 2 = K , I + c [ I _ ~ ( 0 ) ] .  


